Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Rev. chil. nutr ; 47(2): 281-285, abr. 2020. tab
Article in English | LILACS | ID: biblio-1115499

ABSTRACT

Synthetic preservatives are widely present in processed foods, but most of them have carcinogenic potential, requiring the development of new natural alternatives such as fruit extracts, for microbial control. The objective of the study was to evaluate the chemical characterization, antioxidant, and antimicrobial activity of the sugar apple pulp (Annona squamosa L.). Physicochemical characteristics were evaluated, an extract was prepared, and its antioxidant activity by DPPH method and antimicrobial by disk diffusion. Minimal inhibitory concentration and minimum bactericidal concentration against strains of Salmonella typhimurium, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus were evaluated. The physicochemical analysis revealed that sugar apple pulp had 75.0% moisture, 3.0% ash, 4.0% protein, 0.2% lipids, 3.3% fibers, and 14.5% carbohydrates. The antioxidant activity of the extract by the DPPH method was 20.6%. The pulp extract from the sugar apple had inhibition zone for Staphylococcus aureus, satisfactory inhibitory effect against Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, and Salmonella Typhimurium, but did not present a bactericidal effect. Sugar apple pulp presents adequate levels of nutrients and potential for food application due to its microbiological activity and antioxidant properties.


Los conservantes sintéticos están ampliamente presentes en los alimentos procesados, pero la mayoría tienen potencial carcinogénico, lo que requiere el desarrollo de nuevas alternativas naturales para el control microbiano, como los extractos de frutas. El objetivo del estudio fue evaluar la caracterización química, la actividad antioxidante y antimicrobiana de la pulpa de manzana de azúcar (Annona squamosa L.). Se evaluaron las características fisicoquímicas, y se evaluó su actividad antioxidante mediante el método DPPH y antimicrobiano por difusión en disco, concentración inhibitoria mínima y concentración bactericida mínima contra cepas de Salmonella Typhimurium, Escherichia coli, Listeria monocytogenes y Staphylococcus aureus. El análisis fisicoquímico reveló que la pulpa de manzana de azúcar tiene 75.0% de humedad, 3.0% de cenizas, 4.0% de proteínas, 0.2% de lípidos, 3.3% de fibras y 14.5% de carbohidratos. La actividad antioxidante del extracto por el método DPPH fue del 20.6%. El extracto de pulpa de la manzana de azúcar tenía zona de inhibición para Staphylococcus aureus, efecto inhibidor satisfactorio contra Staphylococcus aureus, Escherichia coli, Listeria monocytogenes y Salmonella Typhimurium, pero no presenta efecto bactericida. La pulpa de manzana de azúcar presenta niveles adecuados de nutrientes y potencial para la aplicación de alimentos debido a su actividad microbiológica y propiedades antioxidantes.


Subject(s)
Plant Extracts/pharmacology , Annona/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Salmonella typhimurium/drug effects , Staphylococcus aureus/drug effects , Carbohydrates/analysis , Plant Extracts/chemistry , Proteins/analysis , Microbial Sensitivity Tests , Escherichia coli/drug effects , Lipids/analysis , Listeria monocytogenes/drug effects , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry
2.
Bol. latinoam. Caribe plantas med. aromát ; 18(4): 411-424, jul. 2019. tab, ilus
Article in English | LILACS | ID: biblio-1008180

ABSTRACT

Thymol (2-isopropyl-5-methylphenol) is an aromatic monoterpene found in essential oils extracted from plants belonging to the Lamiaceae family, such as Thymus, Ocimum, Origanum, Satureja, Thymbra and Monarda genera. Growth and biofilm formation by Listeria monocytogenes CLIP 74902 were evaluate using three carbon sources in the presence of thymol. Specific growth rate (h-1) values at 37o with glucose, trehalose and cellobiose with the addition of thymol (µg/mL) 0 (control) and 750, were respectively: 0.22, 0.07; 0.14, 0.04; 0.11, 0.04. Lag periods obtained under the same conditions were (h): 8.19, 13.2; 22.5, 27.5; 23.1, 28.1. A marked antibiofilm activity was observed against the exposure with 750 µg/mL of thymol, showing a high percentage of inhibition: glucose (99 %), trehalose (97 %) and cellobiose (98%), compared to the control. The results suggest that thymol could be used to inhibit the growth and production of biofilms by L. monocytogenes in the food industry.


Timol (2-isopropil-5-metilfenol) es un monoterpeno aromático presente en los aceites esenciales extraídos de plantas pertenecientes a la familia Lamiaceae, como los géneros Thymus, Ocimum, Origanum, Satureja, Thymbra y Monarda. El crecimiento y formación de biopelícula por Listeria monocytogenes CLIP 74902 fueron evaluados utilizando tres fuentes de carbono en presencia de timol. La velocidad específica de crecimiento (h-1) a 37o con glucosa, trehalosa y celobiosa con la adición de timol (µg/mL) 0 (control) y 750, fueron respectivamente: 0.22, 0.07; 0.14, 0.04, 0.11, 0,04. Los períodos lag obtenidos en las mismas condiciones fueron (h): 8.19, 13.2; 22.5, 27.5; 23.1, 28.1. Una marcada actividad antibiofilm fue obtenida con 750 µg/mL de timol, mostrando un alto porcentaje de inhibición con glucosa (99%), trehalosa (97%) y celobiosa (98%), respecto al control. Los resultados sugieren que timol podría ser usado para inhibir el crecimiento y producción de biopelículas por L. monocytogenes en la industria alimentaria.


Subject(s)
Thymol/pharmacology , Biofilms/drug effects , Listeria monocytogenes/drug effects , Terpenes/pharmacology , Kinetics , Biofilms/growth & development , Environment , Fermentation , Food Microbiology , Listeria monocytogenes/growth & development
3.
Hig. aliment ; 33(288/289): 2692-2696, abr.-maio 2019. tab
Article in Portuguese | LILACS, VETINDEX | ID: biblio-1482318

ABSTRACT

Este estudo teve por objetivo avaliar a atividade antimicrobiana do extrato da própolis verde frente a cepas Gram positivas e Gram negativas resistentes a antimicrobianos comerciais. Foi realizado teste de suscetibilidade antimicrobiana das cepas de Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa e Listeria monocytogenes frente a oito antimicrobianos comerciais. Posteriormente foi verificado a atividade antimicrobiana da própolis verde com base na concentração inibitória mínima e concentração bactericida apenas para as cepas que se mostraram resistentes. Foi possível verificar, com exceção de E. coli, que as demais bactérias apresentaram resistência a mais de um antimicrobiano, e o extrato de própolis verde apresentou valores de CIM e CBM variando de 0,18 a 6,20 mg.mL-1 e 0,37 a 50,0 mg.mL-1,respectivamente. O extrato da própolis verde apresenta potencial atividade antimicrobiana em substituição ao uso de antimicrobianos sintéticos.


Subject(s)
Anti-Infective Agents/analysis , Escherichia coli/drug effects , Drug Resistance, Bacterial/drug effects , Listeria monocytogenes/drug effects , Food Microbiology , Propolis/pharmacology , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
4.
Braz. j. microbiol ; 49(1): 169-176, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-889211

ABSTRACT

ABSTRACT Major health challenges as the increasing number of cases of infections by antibiotic multiresistant microorganisms and cases of Alzheimer's disease have led to searching new control drugs. The present study aims to verify a new way of obtaining bioactive extracts from filamentous fungi with potential antimicrobial and acetylcholinesterase inhibitory activities, using epigenetic modulation to promote the expression of genes commonly silenced. For such finality, five filamentous fungal species (Talaromyces funiculosus, Talaromyces islandicus, Talaromyces minioluteus, Talaromyces pinophilus, Penicillium janthinellum) were grown or not with DNA methyltransferases inhibitors (procainamide or hydralazine) and/or a histone deacetylase inhibitor (suberohydroxamic acid). Extracts from T. islandicus cultured or not with hydralazine inhibited Listeria monocytogenes growth in 57.66 ± 5.98% and 15.38 ± 1.99%, respectively. Increment in inhibition of acetylcholinesterase activity was observed for the extract from P. janthinellum grown with procainamide (100%), when compared to the control extract (39.62 ± 3.76%). Similarly, inhibition of acetylcholinesterase activity increased from 20.91 ± 3.90% (control) to 92.20 ± 3.72% when the tested extract was obtained from T. pinophilus under a combination of suberohydroxamic acid and procainamide. Concluding, increases in antimicrobial activity and acetylcholinesterase inhibition were observed when fungal extracts in the presence of DNA methyltransferases and/or histone deacetylase modulators were tested.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cholinesterase Inhibitors/pharmacology , Penicillium/chemistry , Talaromyces/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Chromatin/metabolism , Listeria monocytogenes/drug effects , Listeria monocytogenes/enzymology , Listeria monocytogenes/growth & development , Penicillium/metabolism , Talaromyces/metabolism
5.
Rev. argent. microbiol ; 50(1): 48-55, mar. 2018. ilus
Article in English | LILACS | ID: biblio-958029

ABSTRACT

The Listeria monocytogenes strains selected in the present study exhibited similar behavior in biofilm formation, independently of the tested conditions (bacteriocin from L. plantarum ST8SH, vancomycin, propolis (a natural antimicrobial product) and EDTA (chelating agent)), individual or in associations. The individual application of vancomycin had better inhibitory activity than that of propolis and EDTA; however, the association of the previously mentioned antimicrobial agents with bacteriocins resulted in better performance. However, when we compared the effects of vancomycin, propolis and EDTA, we could clearly observe that the combined application of bacteriocin and vancomycin was more effective than the combination of bacteriocin and propolis, and bacteriocin and EDTA. Considering the current need to reduce the use of antimicrobials and chemical substances in food processing, propolis can represent an alternative to improve the inhibitory effect of bacteriocins against L. monocytogenes biofilm formation, based on the obtained results. In general, high concentrations of bacteriocin produced by L. plantarum ST8SH were more effective in biofilm inhibition, and similar results were observed for vancomycin and propolis; however, all tested EDTA concentrations had similar effect on biofilm formation.


Las cepas de Listeria monocytogenes seleccionadas en el presente estudio presentaron comportamientos similares en la formación de biofilms, independientemente de los tratamientos a las que fueron sometidas (bacteriocina de Lactobacillus plantarum ST8SH, vancomicina, própolis (produto natural antimicrobiano) y EDTA (agentes quelante)), individual o en combinaciones. La aplicación individual de vancomicina presentó una mejor actividad inhibitoria frente a las aplicaciones individuales de própolis y de EDTA; sin embargo, la combinación de estos agentes antimicrobianos con las bacteriocinas resultó en un mejor desempeño. Se observó claramente que la aplicación combinada de bacteriocina y vancomicina fue más efectiva para controlar el desarrollo de biofilm en comparación con la combinación de la bacteriocina y el própolis o de la combinación de la bacteriocina y el EDTA. Considerando la necesidad actual de reducir el uso de sustancias antimicrobianas y químicas en el procesamiento de alimentos y sobre la base de los resultados obtenidos, se puede afirmar que el própolis representa una alternativa para mejorar el efecto inhibitorio de bacteriocinas contra la formación de biofilm de L. monocytogenes. En general, altas concentraciones de la bacteriocina producida por L. plantarum ST8SH fueron más eficaces en la inhibición del biofilm, y se observaron resultados similares para la vancomicina y el própolis; sin embargo, todas las concentraciones de EDTA evaluadas tuvieron un efecto similar en la formación de biofilm.


Subject(s)
Biofilms , Lactobacillus plantarum , Listeria monocytogenes , Propolis , Bacteriocins/pharmacology , Vancomycin/pharmacology , Edetic Acid , Biofilms/drug effects , Lactobacillus plantarum/chemistry , Listeria monocytogenes/drug effects , Anti-Bacterial Agents/pharmacology
6.
Braz. j. microbiol ; 49(supl.1): 113-118, 2018. tab, graf
Article in English | LILACS | ID: biblio-974319

ABSTRACT

Abstract Poultry meat is a food product that usually carries high rates of microbial contamination, including foodborne pathogens. The poultry industry has established different systems to minimize these hazards. In recent years, extensive literature has demonstrated the antimicrobial activity of different contact surfaces made of copper to effectively reduce microbial loads. The aim of the present study was to evaluate the antibacterial effect of copper surfaces on the transmission of two foodborne pathogens - Salmonella enterica and Listeria monocytogenes - and a poultry native microbiota bacterial species - Enterobacter cloacae. We also evaluated the impact of the poultry meat matrix on the antimicrobial activity of a copper surface. Our results indicated that copper surfaces reduced the bacterial load quickly (<than 4 min) when the microorganisms were exposed to polished copper surfaces. Even when bacteria were inoculated on copper surfaces soiled with the organic matrix (washing water from poultry carcasses) and survival rates were significantly higher, an antimicrobial effect was still observed. Survival rates of two microorganisms simultaneously exposed to copper did not show significant differences. We found an antimicrobial effect over pathogenic and non-pathogenic microorganisms. Results suggest a potential role for copper surfaces in the control of microbiological hazards in the poultry industry.


Subject(s)
Animals , Poultry/microbiology , Copper/pharmacology , Meat/microbiology , Anti-Bacterial Agents/pharmacology , Cadaver , Food Contamination/analysis , Salmonella enterica/drug effects , Microbiota/drug effects , Listeria monocytogenes/drug effects
7.
Braz. j. microbiol ; 48(4): 724-729, Oct.-Dec. 2017. tab
Article in English | LILACS | ID: biblio-889162

ABSTRACT

ABSTRACT The effectiveness of bacteriophage P100, nisin and sodium lactate, individually and in combination, in inhibiting Listeria monocytogenes in ready-to-eat pork ham slices was assessed. The antimicrobials were applied to the surfaces of ready-to-eat pork ham slices, which were inoculated with a mixture of L. monocytogenes. Among the individual antimicrobial treatments, bacteriophage P100 was the most effective, decreasing L. monocytogenes to undetectable levels at zero and 72 h post-infection. Sodium lactate was the least effective treatment. Treatment with nisin at zero h significantly reduced initial cell density (p < 0.05). However, this pattern was not observed at 72 h of storage. A significant difference (p < 0.05) existed between the results of separate bacteriophage and nisin treatments after refrigerated storage, but not immediately upon inoculation of the bacteria. The results showed that the use of bacteriophage P100 is the method of choice for the control of bacteria.


Subject(s)
Animals , Bacteriophages/physiology , Fast Foods/microbiology , Food Preservation/methods , Food Preservatives/pharmacology , Listeria monocytogenes/drug effects , Listeria monocytogenes/virology , Meat Products/microbiology , Nisin/pharmacology , Sodium Lactate/pharmacology , Food Preservation/instrumentation , Listeria monocytogenes/growth & development , Swine
8.
Braz. j. microbiol ; 47(3): 757-763, July-Sept. 2016. tab, graf
Article in English | LILACS | ID: lil-788979

ABSTRACT

ABSTRACT The inhibition of Listeria monocytogenes ATCC 7644 on fresh-cut tomato was investigated using nisin alone, and in combinations with organic salts. Nisin at a concentration of 5000 UI/mL was introduced alone or in combination with an organic salt (sodium citrate or sodium acetate each at 3 and 5 g/100 mL each) on fresh-cut tomato previously inoculated with 108 CFU/mL of L. monocytogenes ATCC 7644. Chlorine at 200 ppm was used as a control. The inoculated samples were incubated at different temperatures (4, 10 and 25 °C) and examined at 0, 24, 48 and 72 h. The effects of the antimicrobial treatments on quality parameters of tomato (pH, soluble solids, titratable acidity and vitamin C) were also evaluated, and colour parameters were observed at the lowest storage temperature for 10 days. Both nisin and the organic salts inhibited growth of L. monocytogenes, but the combinations of two compounds were more effective. The nisin-sodium citrate (5%) combination was significantly (p ≤ 0.05) effective, while chlorine was least effective against L. monocytogenes. The quality parameters were substantially retained, especially at 4 °C, suggesting good shelf stability at a low temperature. These results substantiate the use of the cheap and eco-friendly approach to reducing this pathogen of health concern in common fresh produce.


Subject(s)
Salts/pharmacology , Solanum lycopersicum/microbiology , Listeria monocytogenes/drug effects , Nisin/pharmacology , Colony Count, Microbial , Microbial Viability/drug effects , Food Microbiology , Food Preservation/methods , Food Preservatives , Listeria monocytogenes/isolation & purification , Anti-Bacterial Agents/pharmacology
9.
Braz. j. microbiol ; 47(2): 438-443, Apr.-June 2016. tab
Article in English | LILACS | ID: lil-780817

ABSTRACT

Abstract Although the consumption of fresh and minimally processed vegetables is considered healthy, outbreaks related to the contamination of these products are frequently reported. Among the food-borne pathogens that contaminate vegetables is Listeria monocytogenes, a ubiquitous organism that exhibits the ability to survive and multiply at refrigerated temperatures. This study aimed to evaluate the occurrence of L. monocytogenes in vegetables as well as the antimicrobial resistance of isolates. The results showed that 3.03% of samples were contaminated with L. monocytogenes, comprising 2.22% of raw vegetables and 5.56% of ready-to-eat vegetables. Multiplex PCR confirmed the virulence potential of the isolates. Antimicrobial resistance profiling showed that 50% of the isolates were susceptible to the antibiotics used. The resistance of one isolate to penicillin G, a commonly employed therapeutic agent, and the presence of serotype 4b, a serotype commonly associated with food-borne outbreaks, could be potential health hazards for consumers.


Subject(s)
Vegetables/microbiology , Drug Resistance, Bacterial , Listeria monocytogenes/drug effects , Food Contamination/analysis , Listeria monocytogenes/isolation & purification , Anti-Bacterial Agents/pharmacology
10.
Rev. argent. microbiol ; 48(2): 128-136, jun. 2016. graf, tab
Article in English | LILACS | ID: biblio-843157

ABSTRACT

The antibacterial activity of chitosan coatings prepared with acetic or lactic acid, as well as of composite chitosan-gelatin films prepared with essential oils, was evaluated in fresh shredded black radish samples inoculated with Listeria monocytogenes ATCC 19115 and L. monocytogenes ATCC 19112 during seven days of storage at 4 °C. The chitosan coating prepared with acetic acid showed the most effective antibacterial activity. All tested formulations of chitosan films exhibited strong antimicrobial activity on the growth of L. monocytogenes on black radish, although a higher inhibition of pathogens was achieved at higher concentrations of chitosan. The antimicrobial effect of chitosan films was even more pronounced with the addition of essential oils. Chitosan-gelatin films with thyme essential oils showed the most effective antimicrobial activity. A reduction of 2.4 log10 CFU/g for L. monocytogenes ATCC 19115 and 2.1 log10 CFU/g for L. monocytogenes ATCC 19112 was achieved in the presence of 1% chitosan film containing 0.2% of thyme essential oil after 24 h of storage.


Se evaluó la actividad antimicrobiana de coberturas del quitosano y de películas compuestas de quitosano-gelatina en muestras frescas de rábano negro cortado inoculadas con las cepas de Listeria monocytogenes ATCC 19115 y ATCC 19112, almacenadas durante 7 días a 4 °C. Las primeras fueron preparadas con ácido acético o ácido láctico, las segundas con aceites esenciales. Las coberturas de quitosano preparadas con ácido acético mostraron la actividad antimicrobiana más eficaz. Todas las formulaciones de películas de quitosano exploradas mostraron una fuerte actividad antimicrobiana sobre el crecimiento de L. monocytogenes, aunque la mayor inhibición de estos patógenos se logró con las mayores concentraciones de quitosano. La actividad antimicrobiana de las películas de quitosano fue mayor con la adición de aceite esencial. Las películas de quitosano-gelatina con aceite esencial del tomillo fueron las que mostraron la actividad antimicrobiana más eficiente. A las 24 h de almacenamiento, la película con 1% de quitosano y 0,2% de aceite esencial de tomillo produjo una reducción de 2,4 log10 UFC/g en L. monocytogenes ATCC 19115, y de 2,1 log10 UFC/g en L. monocytogenes ATCC 19112.


Subject(s)
Humans , Oils, Volatile/pharmacology , Raphanus/microbiology , Thymus Plant/chemistry , Chitosan/pharmacology , Food Microbiology , Food Preservation/methods , Food Preservatives/pharmacology , Listeria monocytogenes/drug effects , Sensation , Solvents/pharmacology , Food Quality , Acetic Acid/pharmacology , Lactic Acid/pharmacology , Food Storage , Bacterial Load , Food Handling , Gelatin
11.
Braz. j. biol ; 75(4): 923-931, Nov. 2015. tab, graf
Article in English | LILACS | ID: lil-768199

ABSTRACT

Abstract Lactic acid bacteria (LAB) have an important role in a great variety of fermented foods. In addition to their contribution to sensory characteristics, they enhance food preservation and can be used as probiotics. In this study, the antimicrobial and antioxidant activities of culture supernatants and cell free extracts of 16 LAB isolated from meat and dairy products were investigated. The bacterial were identified by 16S rRNA sequencing. GenBank BLAST analysis revealed that all the isolates belong to Enterococcus faecium species. Antimicrobial activity against the indicator microorganism (Listeria monocytogenes) was observed at 11 culture supernatants and 4 cell free extracts. The sensibility of culture supernatant was evaluated by proteinase K and trypsin and it was observed that activity of antimicrobial substance was completely lost after the treatment. All of the isolates showed antioxidant activity as determined by the Thiobarbituric Acid Reactive Substances (TBARS) method with both types of extracts. When the antioxidant capacity was investigated using ABTS•+ method (2,2 azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) and DPPH method (2,2-diphenyl-1-picrylhydrazyl) it was observed that only culture supernatants showed antioxidant capacity. These bacteria could particularly help to reduce or inhibit pathogenic microorganisms as well as oxidative spoilage in foods and feed.


Resumo As bactérias ácido láticas (BAL) têm um papel importante em uma grande variedade de alimentos fermentados. Em adição à sua contribuição para as características sensoriais, estes microorganismos melhoram a conservação de alimentos e podem ser utilizados como probióticos. Neste estudo, as atividades antimicrobiana e antioxidante do sobrenadante e dos extratos livres de células de 16 isolados de LAB de carne e produtos lácteos foram investigadas. Os isolados foram identificados pelo sequenciamento da região 16S do rRNA. Após a comparação das sequências obtidas com aquelas disponíveis na base de dados GenBank, observou-e que todos os isolados foram pertencentes à espécie Enterococcus faecium. A atividade antimicrobiana contra o microrganismo indicador (Listeria monocytogenes) foi observada no sobrenadante das culturas em 11 isolados, e nos extratos livres de células por 4 isolados. A sensibilidade da cultura sobrenadante foi avaliada pela proteinase K e tripsina e observou-se que a atividade da substância antimicrobiana foi completamente perdida após o tratamento com as enzimas proteolíticas. Todos os isolados apresentaram atividade antioxidante, como determinado pelo método do ácido tiobarbitúrico de substâncias reativas (TBARS) com ambos os tipos de extratos. Quando a capacidade antioxidante foi investigada usando o método do ABTS (2,2 azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) e o método de DPPH (2,2-diphenyl-1-picrylhydrazyl) observou-se que apenas os sobrenadantes das culturas demonstraram capacidade antioxidante. Estas bactérias poderiam particularmente ajudar a reduzir ou inibir microorganismos patogênicos, bem como a deterioração oxidativa em alimentos e rações.


Subject(s)
Anti-Infective Agents/pharmacology , Antioxidants/analysis , Dairy Products/microbiology , Enterococcus/chemistry , Listeria monocytogenes/drug effects , Meat/microbiology , Phylogeny , Sequence Analysis, DNA , Thiobarbituric Acid Reactive Substances/chemistry
12.
Braz. j. microbiol ; 46(1): 201-206, 05/2015. tab, graf
Article in English | LILACS | ID: lil-748231

ABSTRACT

Listeria monocytogenes is a pathogen frequently found in dairy products. Its control in fresh cheeses is difficult, due to the psychrotrophic properties and salt tolerance. Bacteriocinogenic lactic acid bacteria (LAB) with proven in vitro antilisterial activity can be an innovative technological approach but their application needs to be evaluated by means of in situ tests. In this study, a novel bacteriocinogenic Lactococcus lactis strain (Lc. lactis DF4Mi), isolated from raw goat milk, was tested for control of growth of L. monocytogenes in artificially contaminated fresh Minas type goat cheese during storage under refrigeration. A bacteriostatic effect was achieved, and counts after 10 days were 3 log lower than in control cheeses with no added LAB. However, this effect did not differ significantly from that obtained with a non-bacteriocinogenic Lc. lactis strain. Addition of nisin (12.5 mg/kg) caused a rapid decrease in the number of viable L. monocytogenes in the cheeses, suggesting that further studies with the purified bacteriocin DF4Mi may open new possibilities for this strain as biopreservative in dairy products.


Subject(s)
Animals , Antibiosis , Bacteriocins/metabolism , Cheese/microbiology , Goats , Lactococcus lactis/isolation & purification , Listeria monocytogenes/drug effects , Milk/microbiology , Bacterial Load , Food Preservation/methods , Food Safety/methods , Lactococcus lactis/metabolism
13.
Braz. j. microbiol ; 46(1): 231-235, 05/2015. graf
Article in English | LILACS | ID: lil-748241

ABSTRACT

Listeria monocytogenes is a foodborne pathogen able to adhere and to form biofilms in several materials commonly present in food processing plants. The aim of this study was to evaluate the resistance of Listeria monocytogenes attached to abiotic surface, after treatment with sanitizers, by culture method, microscopy and Quantitative Real Time Polymerase Chain Reaction (qPCR). Biofilms of L. monocytogenes were obtained in stainless steel coupons immersed in Brain Heart Infusion Broth, under agitation at 37 °C for 24 h. The methods selected for this study were based on plate count, microscopic count with the aid of viability dyes (CTC-DAPI), and qPCR. Results of culture method showed that peroxyacetic acid was efficient to kill sessile L. monocytogenes populations, while sodium hypochlorite was only partially effective to kill attached L. monocytogenes (p < 0.05). When, viability dyes (CTC/DAPI) combined with fluorescence microscopy and qPCR were used and lower counts were found after treatments (p < 0.05). Selective quantification of viable cells of L. monocytogenes by qPCR using EMA revelead that the pre-treatment with EMA was not appropriate since it also inhibited amplification of DNA from live cells by ca. 2 log. Thus, the use of CTC counts was the best method to count viable cells in biofilms.


Subject(s)
Bacterial Load/methods , Biofilms/drug effects , Disinfectants/pharmacology , Environmental Microbiology , Listeria monocytogenes/drug effects , Listeria monocytogenes/physiology , Microbial Viability/drug effects , Biofilms/growth & development , Colony Count, Microbial , Listeria monocytogenes/isolation & purification , Microscopy , Real-Time Polymerase Chain Reaction , Temperature , Time
14.
Indian J Biochem Biophys ; 2015 Feb; 52 (1): 45-59
Article in English | IMSEAR | ID: sea-157955

ABSTRACT

Listeriosis, in particular that caused by Listeria monocytogenes, is a major foodborne pathogen, and its control is becoming difficult because of widespread emergence of drug resistance strains. Chorismate synthase (CS), an essential enzyme of shikimate pathway present only in bacteria, fungi, plant and some apicomplexan parasites, is a validated potential antimicrobial drug target. Antimicrobial development through the elucidation of essential structural features of the CS of L. monocytogenes (LmCS), identification and prioritization of potential lead compounds targeted against LmCS were done. Structure-based virtual screening and docking studies were performed using Autodock tools to retrieve potential candidates with high affinity binding against LmCS model from several ligand repositories. The potency of binding was also checked with other structurally similar CS from Streptococcus pneumoniae (SpCS) and Mycobacterium tuberculosis (MtCS). The sequence and structural studies revealed LmCS was similar to be other CS structures (1Q1L, 1QXO, 1R52, 1R53, 1SQ1, 1UM0, 1UMF, 1ZTB, 2011, 2012, 4ECD and 2G85) with each monomer presenting β-α-β sandwich topology with a central helical core. Molecular docking studies and ADME/Tox results revealed that ZINC03803450 and ZINC20149031 were most potent molecules binding into the active site of LmCS. Other two ligands ZINC13387711 and ZINC16052528 showed a strong binding affinity score against all three structures (LmCS, SpCS and MtCS) and bind to LmCS with the predicted inhibition constant (Ki) values of 22.94 nM and 35.84 nM, respectively. A reported benzofuran-3[2H]-one analog CHEMBL135212 with good ADME/Tox properties and experimental IC50 (nM) value of 7000 nM with SpCS could also be considered as a potential inhibitor of LmCS, as compared to previously reported 41 benzofuran-3[2H]-one analogs against SpCS. This information will assist in discovering those compounds that may act as potent CS inhibitors. Further experimental studies and evaluation of structure-activity relationship could help in the development of potential inhibitors against listeriosis, as well as antibacterial chemotherapy.


Subject(s)
Anti-Bacterial Agents , Ligands/analysis , Ligands/therapeutic use , Listeria monocytogenes/drug effects , Molecular Docking Simulation/methods , Phosphorus-Oxygen Lyases/analysis , Phosphorus-Oxygen Lyases/therapeutic use
15.
Braz. j. microbiol ; 45(1): 89-96, 2014. ilus, tab
Article in English | LILACS | ID: lil-709483

ABSTRACT

This study was conducted to evaluate the antibacterial effect of Carum copticum essential oil (Ajowan EO) against Listeria monocytogenes in fish model system. Ajowan EO chemical composition was determined by gas chromatography/mass spectral analysis and the highest concentration of Carum copticum essential oil without any significant changes on sensory properties of kutum fish (Rutilus frisii kutum) was assigned. Then the inhibitory effect of Ajowan EO at different concentrations in presence of salt and smoke component was tested on L. monocytogenes growth in fish peptone broth (FPB), kutum broth and cold smoked kutum broth at 4 ºC for 12 days. Ajowan EO completely decreased the number of L. monocytogenes in FPB after 12 days of storage, however, antimicrobial effect of EO significantly reduced in kutum and cold smoked kutum broth. Addition of 4% NaCl and smoke component improved the anti-listerial activity of Ajowan EO in all fish model broths.


Subject(s)
Animals , Anti-Bacterial Agents/pharmacology , Carum/chemistry , Fish Diseases/drug therapy , Fish Diseases/microbiology , Listeria monocytogenes/drug effects , Listeriosis/veterinary , Oils, Volatile/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Colony Count, Microbial , Culture Media/chemistry , Cyprinidae/microbiology , Gas Chromatography-Mass Spectrometry , Listeriosis/drug therapy , Listeriosis/microbiology , Microbial Viability/drug effects , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Sodium Chloride/metabolism , Temperature
16.
Braz. j. microbiol ; 44(4): 1181-1188, Oct.-Dec. 2013. ilus, tab
Article in English | LILACS | ID: lil-705259

ABSTRACT

This study was developed in order to evaluate two alternatives for the control of Listeria monocytogenes in raw bovine meat pieces, both based on the use of Thymus vulgaris and Rosmarinus officinalis essential oils (EOs). The antilisterial activity of different concentrations of the EOs was tested in vitro using agar dilution and disk volatilization techniques. In addition, L. monocytogenes was inoculated in meat pieces, which were submerged in edible gelatin coatings containing 2% (v/v) EOs or submitted to the vapor of EOs (0.74 μL.cm-3). L. monocytogenes was quantified after one, 48 and 96 hours of storage (7 °C). In the in vitro tests, the EO of T. vulgaris presented higher activity. The two options used (edible gelatin coating and vapor activity), in spite of exercising effects with differentiated behaviors, presented antibacterial activity against L. monocytogenes inoculated in raw bovine meat (p < 0.05). Greatest antibacterial activity were obtained in the experiment that used edible coatings containing EOs, at 48 hours of storage reductions in bacterial counts between 1.09 and 1.25 Log CFU.g-1 were obtained. In the vapor effect experiment, the EO of T. vulgaris caused the highest reduction in the population of bacteria inoculated in raw bovine meat (p < 0.05), 0.40 Log CFU.g-1 at 96 hours of storage. This study supplied important information regarding new and promising natural alternatives, based on the concept of active packaging, for the control of L. monocytogenes in the meat industry.


Subject(s)
Animals , Cattle , Anti-Bacterial Agents/pharmacology , Food Preservatives/pharmacology , Listeria monocytogenes/drug effects , Meat/microbiology , Oils, Volatile/pharmacology , Thymus Plant/chemistry , Anti-Bacterial Agents/isolation & purification , Bacterial Load , Food Preservatives/isolation & purification , Listeria monocytogenes/growth & development , Microbial Sensitivity Tests , Oils, Volatile/isolation & purification , Rosmarinus/chemistry , Temperature
17.
Braz. j. microbiol ; 44(4): 1163-1167, Oct.-Dec. 2013. graf, tab
Article in English | LILACS | ID: lil-705277

ABSTRACT

The antimicrobial activity of the bacteriocin-like substance (BLS) P34 against Listeria monocytogenes was investigated in chicken sausage. The BLS was applied to chicken sausages (256 AU g-1) previously inoculated with a suspension of 10² cfu g-1 of L. monocytogenes. BLS P34 inhibited the indicator microorganism in situ in all incubation times for up to 10 days at 5 °C. The effectiveness of BLS P34 was increased when it was added in combination with nisin. The bacteriocin was also tested in natural eatable natural bovine wrapping (salty semi-dried tripe) against the same indicator microorganism, also showing inhibitory capability in vitro. BLS P34 showed potential to control L. monocytogenes in refrigerated meat products.


Subject(s)
Animals , Cattle , Anti-Bacterial Agents/pharmacology , Food Microbiology , Listeria monocytogenes/drug effects , Peptides/pharmacology , Chickens , Food Preservatives/pharmacology , Listeria monocytogenes/growth & development , Nisin/pharmacology , Temperature , Time Factors
18.
Braz. j. microbiol ; 44(4): 1189-1194, Oct.-Dec. 2013. ilus, tab
Article in English | LILACS | ID: lil-705283

ABSTRACT

The aim of this study was to assess the activity of essential oil extracted from the leaves of C. blanchetianus Baill, popularly known as "marmeleiro", in inhibiting the growth and survival of pathogenic microorganisms in food by determining their survival in vitro and by observing the behaviour of Listeria monocytogenes inoculated into a food model (meat cubes) that was stored at refrigeration temperature (7 ± 1 ºC) for 4 days. The results indicated a bactericidal effect against Aeromonas hydrophila and Listeria monocytogenes and bacteriostatic action against Salmonella Enteritidis. A bacteriostatic effect on meat contaminated with L. monocytogenes was found for all concentrations of essential oils tested. These results showed that essential oil from the leaves of C. blanchetianus Baill represents an alternative source of potentially natural antimicrobial agents that may be used as a food preservative.


Subject(s)
Aeromonas hydrophila/drug effects , Anti-Bacterial Agents/pharmacology , Croton Oil/pharmacology , Croton/chemistry , Listeria monocytogenes/drug effects , Oils, Volatile/pharmacology , Salmonella enteritidis/drug effects , Anti-Bacterial Agents/isolation & purification , Bacterial Load , Croton Oil/isolation & purification , Food Preservatives/isolation & purification , Food Preservatives/pharmacology , Microbial Viability/drug effects , Oils, Volatile/isolation & purification , Plant Leaves/chemistry , Temperature
19.
Arch. latinoam. nutr ; 63(3): 247-253, sep. 2013. ilus, tab
Article in Spanish | LILACS | ID: lil-749967

ABSTRACT

En la literatura científica mundial, existen muchos estudios que demuestran la capacidad antimicrobiana de diferentes hierbas, incluyendo el té verde. No obstante, muchos resultados son divergentes o no comparables. También, existen en el mercado muchas formulaciones de té verde, de las cuales hay poca información respecto a su actividad. En el presente trabajo se determinó el potencial efecto antimicrobiano contra cepas de Escherichia coli, Salmonella enterica, Listeria monocytogenes, Staphylococcus aureus, Candida albicans y Aspergillus niger de 50 muestras diferentes de té verde seco y en infusión al 10%, distribuidas de manera comercial en Costa Rica. Se contrastó su actividad con la del té verde (Camellia sinensis) de origen chino. Se evaluaron diferentes solventes para preparar extractos ricos en polifenoles a partir del té verde. Los fenoles totales se determinaron mediante el método espectrofotométrico de Folin-Ciocalteu usando el ácido gálico como material de referencia. La evaluación de la capacidad antimicrobiana del extracto y las infusiones de té verde se llevó a cabo mediante el método de microplatos descrito por Breukink (2006). El etanol fue el solvente que mostró mayor eficiencia. No hubo efecto antimicrobiano de las diferentes muestras contra los microorganismos evaluados, excepto con Listeria monocytogenes, dondese evidenció un efecto inhibitorio en las concentraciones de 10,5 y 1,05 mg/mL de los extractos en el 70% de marcas analizadas y en el control. Ninguna de las infusiones evaluadas, incluyendo la del té control mostró efecto inhibitorio contra esta bacteria.


Many studies can be found in scientific literature demonstrating the antimicrobial capacity of different herbs, including green tea. Nevertheless, many results are divergent or cannot be compared. Several green tea formulations may be found in market, but there is scarce or non-information about its activity. In this work, the potential antimicrobial effect of 50 samples of dry green tea and in 10% infusion against Escherichia coli, Salmonella enterica, Listeria monocytogenes, Staphylococcus aureus, Candida albicans and Aspergillus niger distributed in the metropolitan area of Costa Rica, was determined. This activity was compared with the effect produced by Chinese origin green tea (Camellia sinensis). Different solvents were evaluated for preparing polyphenol enriched extracts from green tea samples. Total phenols were determined using the Folin-Ciocalteu spectrophotometric methodology, using galic acid as reference. Antimicrobial activity of green tea extracts and infusions was evaluated using the microplate methodology described by Breuking (2006). Ethanol was the most efficient solvent used for the polyphenol extractions. There was no antimicrobial effect of the different green tea extracts and infusions against the microorganisms evaluated, except for Listeria monocytogenes, where the extracts of 70% of samples analyzed and the control showed an inhibitory effect in the 10,5 mg/mL and 1,05 mg/L concentrations. None of the infusions tested, including the control, showed any effect against this bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Camellia sinensis/chemistry , Microbial Sensitivity Tests , Tea/chemistry , Anti-Bacterial Agents/isolation & purification , Aspergillus niger/drug effects , Costa Rica , Candida albicans/drug effects , Escherichia coli/drug effects , Listeria monocytogenes/drug effects , Salmonella enterica/drug effects , Staphylococcus aureus/drug effects
20.
Rev. argent. microbiol ; 45(2): 93-8, jun. 2013.
Article in Spanish | LILACS, BINACIS | ID: biblio-1171779

ABSTRACT

Yerba mate (Ilex paraguariensis St. Hil.) has been studied for its important biological activities mainly attributed to phenolic compounds. This study evaluated the antimicrobial activity of methanolic and ethanolic extracts of yerba mate against food pathogens, such as Staphylococcus aureus, Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli through minimum inhibitory (MIC) and bactericidal (MBC) concentrations, in addition to the determination of chemical composition by gas chromatography with mass spectrometry (GC-MS) and phenolic content. The most effective extract had its activity evaluated under different pH conditions by growth curve analysis. All microorganisms except E. coli were inhibited. The ethanolic extract showed the lowest MIC/MBC (0.78/0.78 mg/ml), the highest phenolic content (193.9 g.GAE/kg) and the presence of chlorogenic acid derivatives, especially 3-O-caffeoylquinic and caffeic acid. This extract was able to inhibit microbial growth at pH 7 and 8.


Subject(s)
Escherichia coli/drug effects , Plant Extracts/pharmacology , Ilex paraguariensis , Listeria monocytogenes/drug effects , Salmonella enteritidis/drug effects , Staphylococcus aureus/drug effects , Food Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL